CONDENSING BOILER TECHNOLOGY

Principles involved, and why it offers the most efficient solution in residential and commercial heating.

> James Romersberger Quintessence Corporation

> > www.FCXalaska.com

Presentation Outline

- Condensing Technology
- Condensing vs. Conventional
- Interesting Observations
- Condensing Boilers

Condensing Technology

- How is Heat Recovered
- What is Condensing?
- How Does it make for greater efficiency

How Heat is Recovered

There are **Two Processes** by which heat is recovered from the burning of fuel.

Reduction of the burn temperature (<u>sensible</u> <u>heat</u>). Oil burns at about 4000° F, the stack temperature normally is about 350° F. Further reduction leads to the 2nd process.

Recovering of the <u>latent heat</u> of vaporization (<u>latent</u> from the Greek root word meaning hidden). This is the condensing part.

What is condensing?

The products of combustion consist primarily of <u>CO2</u> and <u>Water Vapor.</u>

Condensing refers to the cooling of the stack gasses to the point where the water vapor condenses into liquid. It does not refer to the water circulating in the boiler.

How does Condensing Make for Greater Efficiency

- When water changes state from a gas to a liquid (goes from a gas at 212° to liquid at 212°), it gives off heat that is absorbed by the water in the boiler.
- This process recovers the latent (hidden) heat of vaporization, and takes place in the condenser.

• The net result is greater efficiency.

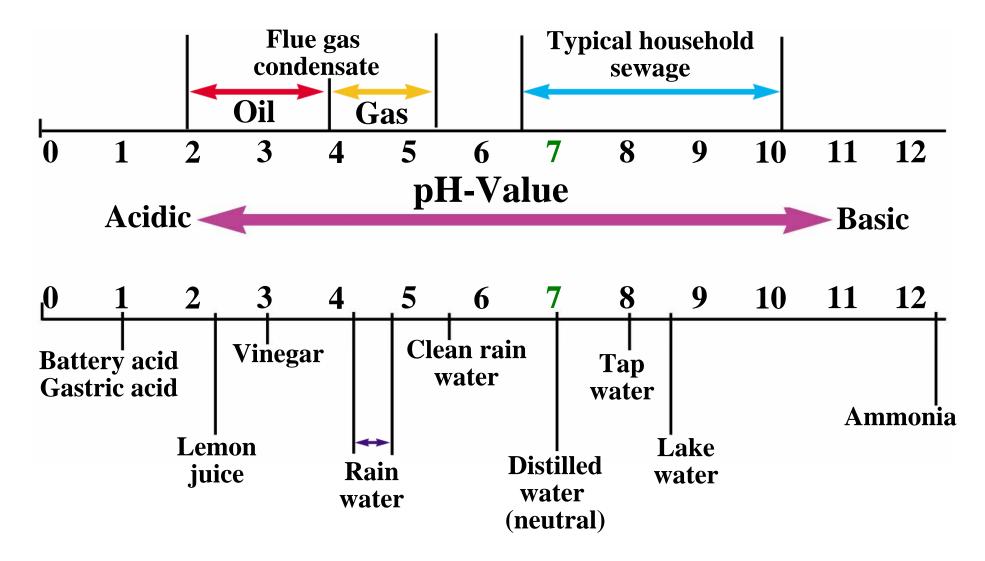
Condensing vs. Conventional

 Lower Temperatures Why is condensing bad for conventional boilers **pH Values** How and why condensing

All Condensing Boilers Run at Lower Temperatures

Condensing boilers are defined by:

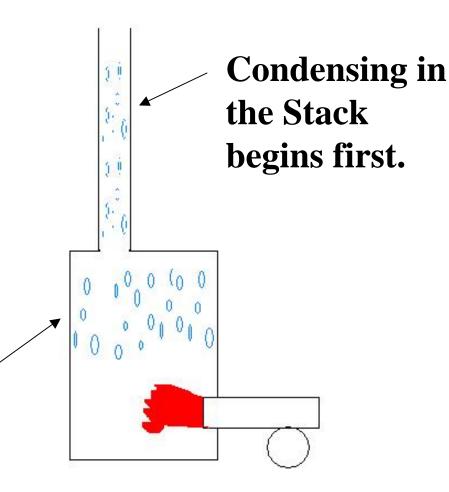
- Lower Stack Temperatures (80° to 175°)
- Lower water supply temperatures (100° to 120°)
- Lower water return temperatures $(80^{\circ} \text{ to } 100^{\circ})$


Non-condensing conventional boilers require stack temperatures of 300° to 400° F, and return water temperatures of about 130° F in order not to condense.

Lower Temperatures = \$\$\$\$\$

Why is Condensing Bad for Conventional Boilers?

- It's the nature of the condensate, it is <u>slightly acidic</u>.
- Measured values around Fairbanks are about <u>pH 4</u>.
- The stack can be destroyed in year or less, creating a fire hazard. Note that the stainless steel in Metalbestos types of stacks will also fail, because not all stainless steels are created equal.
- Life expectancy of the boiler will be greatly reduced.
- Conventional boilers are not designed to condense.


pH VALUES OF VARIOUS FLUIDS

Causes for Condensing Conventional Boilers

- Note that any boiler can be made to condense
- Causes
 - Under Firing
 - Improper Tuning
 - Improper installation
 - Too cool return water
 - Controls not set properly

Condensing in *the Boiler can follow.*

Some Interesting Observations

- Stack Temperatures vs. Boiler Design
- Insulated Stacks
- Conclusions

The confining factor in non-condensing boiler design is:

Return Water TEMPERATURE

STACK TEMPERATURE

*** NOT ***

EFFICIENCY

The primary purpose of the very expensive insulated stove pipe of a conventional boiler is not designed to protect your home from high stack temperatures but to hold the heat in so the flue gasses won't condense.

Conclusions

Lower temperatures mean greater efficiency

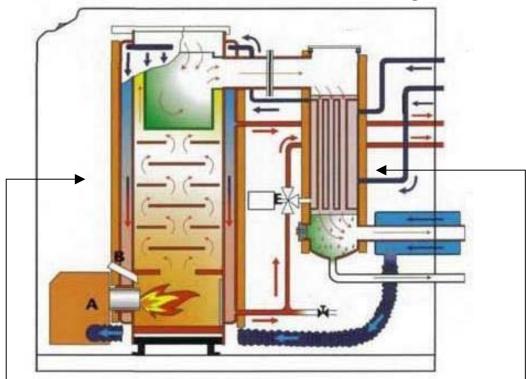
Once the challenge of handling the condensate is solved, every degree the stack temperature is lowered is translated to \$\$\$ saved.

The confining design issue in condensing technology is now:

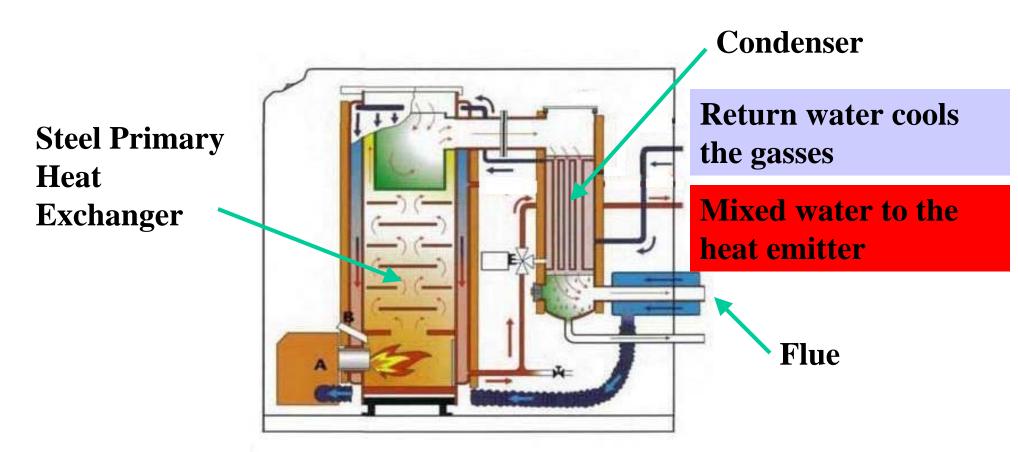
THERMODYNAMIC

Condensing Boilers

- Types
- Boiler Construction
- Stack Materials
- Handling the Condensate
- More on Efficiency
- Will it Work in My Home
- What can you expect
- Tax Credits


Condensing Boilers 2 Basic Concepts

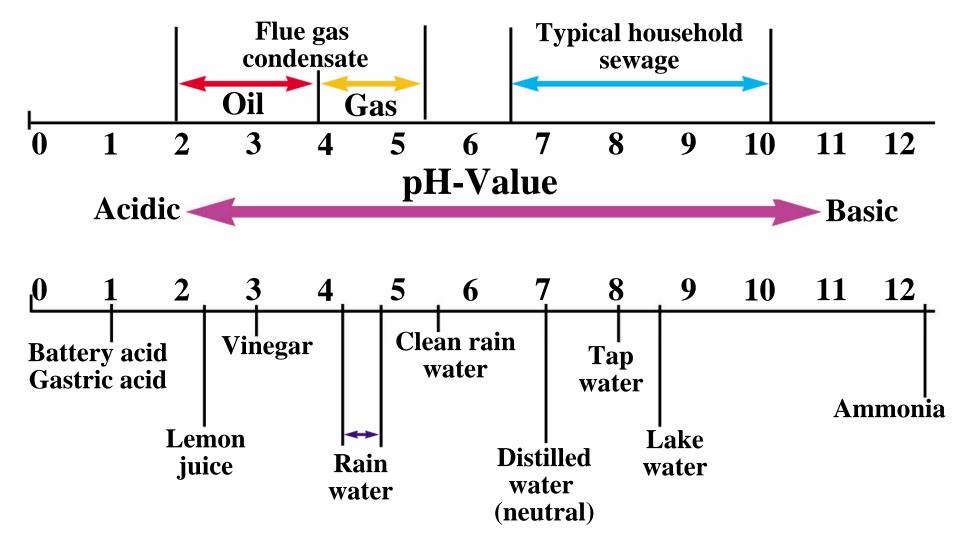
Munchkin Natural Gas


100% Stainless Steel

FCX - Dual Heat Exchanger

Welded Steel Primary 100% Stainless[|] Steel Secondary Condenser

Boiler Construction


- 1. Combustion gasses rise thru the <u>Primary</u> and continue down through the <u>Condenser</u> and then to the flue.
- 2. Water flows counter to the direction of the gasses and enters the bottom of the condenser.
- 3. The flue gas is cooled enough to condense, and this adds the latent heat of vaporization into the water.

Stack Materials

- Stack temperatures are so low that plastic is used.
- Zero Clearance to Combustibles.
- Huge Savings in both
 Materials & Labor

Handling the Condensate pH VALUES OF VARIOUS FLUIDS

ASHRAY Presentation by Jim Cooke Mechanical Solutions NW, Nov 2005

Neutralization and Disposal

- Neutralization
 - How to do it
 - Is it necessary?
- Disposal
 - Down the drain
 - Pump it away

Efficiency vs. Stack Temperatures

As Stack temperature rises, efficiency decreases. Note that these readings do not adjust for the condensing effect. Efficiencies are actually several points higher.

Efficiencies – Methods of Measurement Annual Fuel Utilization Efficiency (AFUE)

VS.

Seasonal Efficiency

Vs.

Burn Efficiency

- AFUE is the only <u>APPLES to APPLES</u> comparison available.
- Your AFUE and Seasonal efficiencies <u>can never exceed your</u> <u>burn efficiency</u>.
- Start with the most efficient technology available and build on that with controls and energy saving techniques.
- THE BOTTOM LINE What ever heat goes up the chimney is lost.

A Condensing Boiler Will it work in my home?

If your home has radiant heat the answer is an emphatic **YES**.

Otherwise. There are more factors to consider:

- 1. Is the boiler large enough?
- 2. Do you need high water temperatures? Many well insulated homes do not. Can you utilize the lower water temperatures condensing boilers normally use.
- 3. If not, can you add more emitters (baseboard, unit heaters, radiant panels, etc.) to lower the temperature of the supply water needed.
- 4. Can you add more heat exchangers to lower the temperature of the return water and promote more condensing?

What You Can Expect

Out of the box in a radiant home you will get the 93% that is common to all oil-fired condensing boilers. With natural gas you will probably get slightly higher – there is more water in gas.

By using some basic controls and condensing enhancing techniques such as stack robbers, domestic water preheating, and HRV air preheating, you can reach 97% to 98%.

Conclusions Reinforced

Once you can handle the condensate, every degree you lower the stack temperature increases both the <u>sensible heat recovery</u> (from lower stack temperatures) and the <u>latent</u> <u>heat recovery</u> (from the condensing effect).

THE BOTTOM LINE

Any heat that exits through the stack is lost.

LAST BUT NOT LEAST Only Condensing Boilers are approved for the Federal Energy Tax Credit

CONDENSING BOILER TECHNOLOGY

Principles involved, and why it offers the most efficient solution in residential and commercial heating.

> James Romersberger Quintessence Corporation

> > www.FCXalaska.com